NASA /TM-20220000049

Integrating FRET with Copilot:
Automated Translation of Natural
Language Requirements to Runtime
Monitors

ITvan Perez
National Institute of Aerospace, Hampton, Virginia

Anastasia Mavridou

KBR, NASA Ames Research Center, Moffett Field, California

Thomas Pressburger
NASA Ames Research Center, Moffett Field, California

Alwyn Goodloe
NASA Langley Research Center, Hampton, Virginia

Dimitra Giannakopoulou™
NASA Ames Research Center, Moffett Field, California
*Author contributed to this work prior to joining AWS

January 2022

NASA STI Program ...

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA scienti ¢ and technical
information (STI) program plays a key part in
helping NASA maintain this important role.

The NASA STI Program operates under the
auspices of the Agency Chief Information

O cer. It collects, organizes, provides for
archiving, and disseminates NASA’s STI. The
NASA STI Program provides access to the
NTRS Registered and its public interface, the
NASA Technical Reports Server, thus providing
one of the largest collections of aeronautical and
space science STI in the world. Results are
published in both non-NASA channels and by
NASA in the NASA STI Report Series, which
includes the following report types:

TECHNICAL PUBLICATION. Reports of
completed research or a major signi cant
phase of research that present the results of
NASA programs and include extensive data or
theoretical analysis. Includes compilations of
signi cant scienti ¢ and technical data and
information deemed to be of continuing
reference value. NASA counterpart of
peer-reviewed formal professional papers, but
having less stringent limitations on manuscript
length and extent of graphic presentations.

TECHNICAL MEMORANDUM.

Scienti ¢ and technical ndings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

CONTRACTOR REPORT. Scienti ¢ and
technical ndings by NASA-sponsored
contractors and grantees.

in Pro le

CONFERENCE PUBLICATION.

Collected papers from scienti ¢ and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

SPECIAL PUBLICATION. Scienti c,
technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

TECHNICAL TRANSLATION. English-
language translations of foreign scienti ¢ and
technical material pertinent to NASA’s
mission.

Specialized services also include organizing and
publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI
Program, see the following:

Access the NASA STI program home page at
http: / /www.sti.nasa.gov

E-mail your question to help@sti.nasa.gov

Phone the NASA STI Help Desk at
757-864-9658

Write to:
NASA STI Information Desk
Mail Stop 148

NASA Langley Research Center
Hampton, VA 23681{2199

NASA /TM-20220000049

Integrating FRET with Copilot:
Automated Translation of Natural
Language Requirements to Runtime
Monitors

ITvan Perez
National Institute of Aerospace, Hampton, Virginia

Anastasia Mavridou

KBR, NASA Ames Research Center, Moffett Field, California

Thomas Pressburger

NASA Ames Research Center, Moffett Field, California

Alwyn Goodloe
NASA Langley Research Center, Hampton, Virginia

Dimitra Giannakopoulou™
NASA Ames Research Center, Moffett Field, California
*Author contributed to this work prior to joining AWS

National Aeronautics and
Space Administration

Ames Research Center, Mo ett Field, CA 94035

January 2022

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not constitute
an o cal endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics
and Space Administration.

Executive Summary

Runtime veri cation (RV) enables monitoring systems at runtime, to detect property vi-
olations early and limit their potential consequences. To provide the level of assurance
required for ultra-critical systems, monitor speci cations must faithfully re ect the original
mission requirements, which are often written in ambiguous natural language. This report
presents an end-to-end framework to capture requirements in structured natural language
and generate monitors that capture their semantics faithfully. We leverage NASA’s Formal
Requirement Elicitation Tool (fret), and the RV system Copilot. We extend fret with
mechanisms to capture additional information needed to generate monitors, and introduce
Ogma, a new tool to bridge the gap between fret and Copilot. With this framework,
users can write requirements in an intuitive format and obtain real-time C monitors suitable
for use in embedded systems. Our toolchain is available as open source.

Contents

[2 Step-by-step Framework Work ow|

B FRET Steps|

4 Ogma Steps|

[5 Copilot Steps|

(6 Preliminary Results|

/_Conclusion|

71

FSM Speci cation| e

72

FSM Manager Speci cation|

7.3

FSM Sensor pecl cation| e

74

Regulators Specl cation| e

List of Figures

L1 Framework overviewl e 1
[2.1 Step-by-step WOrk OW| 3
[2.2 Running example in Natural Language (NL), fretish, and pmLTL forms. | 4
3.1 fretexplanations| 5
B2 Tretvariableediton 6
.1 Demonstration of Copilot monitor running as X-Plane plugin: cruising. | . 9
b.2 Demonstration of Copilot monitor running as X-Plane plugin: stall. |. . . 9

5.3 Demonstration of Copitlot monitor running as X-Plane plugin: recovery. |. 10

List of Tables

[6.1 Regulators analysis results with the Kind2 (abbr. by K) model checker and |
L runtime monitors. Timeout was set to 2 hours for the model checkers and |
| the monitors were tested for up to 2000 di erent inputs. 12

[6.2 FSM analysis results with the Kind2 (abbr. by K) model checker and runtime |
L monitors. Timeout was set to 2 hours for the model checkers and the monitors |
| were tested for 2000 di erent inputs.| 12

Chapter 1

Introduction

Safety-critical systems, such as aircraft, automobiles, and power systems, where failure can
result in injury or death of a human [1], must undergo extensive assurance. The veri cation
process must ensure that the system satis es its requirements under realistic operating
conditions and that there is no unintended behavior. Veri cation rests on possessing a precise
statement of requirements, arguably one of the most di cult tasks in engineering reliable
software. Formal veri cation techniques are, in principle, one method for achieving the
level of reliability required in safety-critical systems. Although there have been considerable
advances in industrial-scale formal methods, in most real-world scenarios it is not yet practical
to apply formal methods to an entire system due to their exceedingly large complexity and
the di culty in constructing speci cations.

Runtime veri cation (RV) [2, |3, 4] has the potential to enable the safe operation of
complex safety-critical systems. RV monitors can be used to detect and respond to property
violations during the mission, as well as to verify implementations and simulations at design
time. For monitors to be e ective, they must faithfully re ect the mission requirements,
which is generally di cult for any non-trivial properties, since properties are normally
expressed in temporal logic or programming code, and requirements in natural language.

The focus of this report , as shown

in Figure [L.1, is to provide an end-to- 7% Elicitation
end framework that takes as input require- ‘Requirements | /

ments and other necessary data and pro- }\ Toolchain |—— Formalization
vides mechanisms to 1) help the user deeply (Variables data’—"" |

understand the semantics of these require- \ Monitor

ments, 2) automatically generate formal- it

izations and 3) produce RV monitors that
faithfully capture the semantics of the re-
quirements. We leverage NASA’s Formal
Requirement Elicitation Tool (fret) [5, 6] and the runtime monitoring system Copi-
lot [7,[8,9]. fret allows users to express and understand requirements through its intuitive
structured natural language (named fretish) and elicitation mechanisms, and generates
formalizations in temporal logic. Copilot allows users to specify monitors and compile
them to hard real-time C code.

The contribution of this report is the tight integration of the fret-Copilot tools to
support the automated synthesis of executable RV monitors directly from requirement
speci cations. In particular, we present:

< A new tool, named Ogma, that receives requirement formalizations and variable data

Figure 1.1: Framework overview

from fret and compiles these intoCopilot monitors.
" An extension of the fret analysis portal to support the generation and export of
speci cations that can be directly digested by Ogma.
" Preliminary experimental results that evaluate the proposed work ow.
All tools needed by our work ow are available as open source [10, 11, 12].

Related Work. A number of runtime veri cation languages and systems have been
applied in resource-constrained environments [13, 14, 15, 16, 17, 18]. In contrast to our
work, these systems do not provide a direct translation from natural language. Several
tools [19, 20, 21, 22, 23] formalize natural-language like requirements, but not for the
purpose of generating runtime monitors. The STIMULUS tool [24] allows users to express
requirements in an extensible, natural-like language that is syntactic sugar for hierarchical
state machines. The machines then act as monitors that can be used to validate requirements
during the design and testing phases, but are not intended to be used at runtime. FLEA [25]
is a formal language for expressing requirements that compiles to runtime monitors in a
garbage collected language, making it harder to use in embedded systems; in contrast, our
approach generates hard real-time code.

Chapter 2

Step-by-step Framework Work ow

To integrate fret and Copilot , we extended thefret analysis portal and created the
Ogma tool. Figure 2.1 shows the step-by-step work ow of the complete framework - dashed
lines represent the newly added steps (2, 3, and 4). Once requirements are written fretish
fret helps users understand and re ne their requirements through various explanations and
simulation (step 0). Next, fret automatically translates requirements (step 1) into pure
Past-time Metric Linear Temporal Logic (pmLTL) formulas. Next, information about the
variables referenced in the requirements must be provided by the user (step 2). The formulas,
as well as the provided variables' data, are then combined to generate the Component
Speci cation (step 3). Based on this speci cation, Ogma creates a completeCopilot
monitor speci cation (step 4). Copilot then generates the C Monitor (step 5), which is
given along with other C code (step 6) to a C Compiler for the generation (step 7) of the
nal object code.

Figure 2.1: Step-by-step work ow

Running Example. The next sections illustrate each work ow step using a ight-critical
system requirement: airplanes should always avoid stalling (a stall is a sudden loss of
lift, which may lead to a loss of control). To avoid stalls, they should y above a certain
speed, known asstall speed(as well as stay below a critical angle of attack). Our running
requirement example is captured in natural language in Figure 2.2. For the purposes of this
example, we consider the airspeed threshold to be 100 m/s and the correction time to be 10
seconds.

NL: \ While ying, if the airspeed is below 100 m/s, the autopilot shall increase the airspeed to
at least 100 m/s within 10 seconds.

FRETish: in flight mode the aircraft shall within 10 seconds
satisfy (airspeed >= 100)
pmLTL: H (Lin flight ! (Y ((O [z10) (((airspeed < 100) & ((Y (‘(airspeed < 100))) | Fin _flight))

& (!(airspeed 100)))) ! (Op<1g)(Fin Aflight | (airspeed 100)))) S (((O (=19 (((airspeed <

100) & ((Y (!(airspeed < 100))) | Fin _flight)) & (!(airspeed 100)))) ! (O 10y (Fin Alight

| (airspeed 100)))) & Fin _flight)))) & (('Lin flight) S (('Lin flight) & Fin _flight)) !

(((O [z10) (((airspeed < 100) & ((Y (‘(airspeed < 100))) | Fin flight)) & (!(airspeed 100))))

' (Op< 107 (Fin Alight | (airspeed 100)))) S (O (=107 (((airspeed < 100) & ((Y (‘(airspeed <
100))) | Fin light)) & (!(airspeed 100)))) ! (O« 1q(Fin flight | (airspeed 100)))) &

Fin _flight))

where Fin flight (First timepoint in flight mode) is flight & (FTP | Y [flight) , Lin flight (Last
timepoint in flight mode) is Iflight & Y flight , FTP (First Time Point) is ! Y true .

Figure 2.2: Running example in Natural Language (NL), fretish , and pmLTL forms.

Chapter 3

FRET Steps

Next we discussfret , the requirements tool that constitutes our frontend.

Step O: fretish and semantic nuances. A fretish requirement (see running example
in Figure 2.2) contains up to six elds: scope, , component*, shall* , timing ,
and response* . Fields marked with * are mandatory.

componentspeci es the component that the requirement refers to (e.g., aircraft). shall
expresses that the component's behavior must conform to the requirementresponse is of
the form satisfy R, where R is a Boolean condition (e.g., satisfy airspeed 100). scope
speci es the period when the requirement holds during the execution of the system, e.g.,
when \in ight mode". is a Boolean expression that further constrains when
the response shall occur (e.g., the requirement becomes relevant only upon airspeed 100
becoming true). timing speci es when theresponse must occur (e.g., within 10 seconds).

Getting a temporal requirement
right is usually a tricky task since
such requirements are often riddled
with semantic subtleties. To help
the user,fret provides a simulator
and semantic explanations [5]. For
example, the diagram in Figure 3.1
explains that the requirement is
only relevant within the grayed box
M (while in ight mode). TC repre-
sents the triggering condition (air-
speed< 100) and the orange band,
with a duration of n=10 seconds,
states that the response (airspeed Figure 3.1: fret explanations
>=100) is required to hold at least once within the 10 seconds duration, assuming that
ight mode holds for at least 10 seconds.

Step 1. fretish to pmLTL. For eachfretish requirement, fret generates formulas in a
variety of formalisms. For the Copilot integration, we use the generated pmLTL formulas
(Figure 2.2) Clearly, manually writing such formulas can be quite error-prone, while the
fret formalization process has been extensively tested through itformalization verier [5].

Steps 2 & 3: Variables data
and Component Speci cation.

We extendedfret 's analysis por-
tal [26] to capture the informa-
tion needed to generate Component
Speci cations for Ogma. To gen-
erate a speci cation, the user must
indicate the type (i.e., input, out-
put, internal) and data type (inte-
ger, Boolean, double, etc) of each
variable (Figure 3.2). Internal vari-
ables represent expressions of in-
put and output variables; if the
same expression is used in multiple
requirements, an internal variable Figure 3.2: fret variable editor

can be used to substitute it and simplify the requirements. The user mustassign an ex-
pression to each internal variable. In our example, theflight internal variable is de ned
by the expressionaltitude > 0.0 , wherealtitude is an input variable. Internal variable
assignments can be de ned in Lustre [27] or Copilot [7]. Integrated Lustre and Copilot
parsers identify parsing errors and return feedback (Figure 3.2). Note thatfret asks users
for variables data only for the connection with analysis tools (e.g., Copilot). Other fret
functionalities such as requirement formalization do not require this information. Once
steps 1 and 2 are completedfret generates a Component Speci cation, which contains all
requirements in pmLTL and Lustre code, as well as variable data that belong to the same
system component.

Chapter 4

Ogma Steps

Ogma is a command-line tool to produce monitoring applications. Ogma generates monitors
in Copilot , and also supports integrating them into larger systems, such as applications
built with NASA's core Flight System (cFS) [28].

Step 4: Copilot Monitors. Ogma provides a command fret-component-spec to
process Component Speci cations and generates a corresponding Copilot speci cation. For
example:

$ ogma fret-component-spec --fret-file-name reqgs.json > Monitor.hs

The command traverses the Abstract Syntax Tree of the Component Speci cation, and
converts each tree node into itsCopilot counterpart. Input and output variables in fret
becomeextern streams in Copilot , or time-varying sources of information needed by the
monitors:

airspeed :: Stream Double
airspeed = extern "airspeed" Nothing

flight :: Stream Bool
flight = extern "flight" Nothing

Internal variables are also mapped to streams. Each requirement's pmLTL formula is
translated into a Boolean stream, paired with a C handlertriggered when the requirement
is violated. In the example below, the property we monitor is associated with a handler,
handlerpropAvoidStall , which must be implemented separately in C by the user to
determine how to address property violations:

propAvoidStall :: Stream Bool
propAvoidStall = ((PTLTL.alwaysBeen ((((not (flight)) && ...)))))

spec :: Spec
spec = do
trigger "handlerpropAvoidStall" (not propAvoidStall) []

Chapter 5

Copllot Steps

Copilot is a stream-based runtime monitoring language.Copilot streams may contain
data of di erent types. At the top level, speci cations consist of pairs of Boolean streams,
together with a C handler to be called when the current sample of a stream becomes true.
For a detailed introduction to Copilot , see [7].

Step 5: C Monitors. Ogma generates self-containedCopilot monitoring speci cations,
which can be further compiled into C99 by just compiling and running the Copilot
speci cations with a Haskell compiler. This process produces two les: a C header and a C
implementation.

Step 6: Larger Applications. The C les generated by Copilot are designed to be
integrated into larger applications. They provide three connections end-points: extern
variables, astep function, and handler functions, which users implement to handle property
violations. The code generated has no dynamic memory allocation, loops or recursive calls,
it executes in predictable memory and time. For our running example, the header le
generated byCopilot declares:

extern bool flight;
extern float airspeed;

void handlerpropAvoidStall(void);
void step(void);

Users are not expected to modify the les generated byCopilot , but simply use the
above interface to connect them to the system being monitored.

Commonly, the calling application will poll sensors, write their values to global variables
(in the example above,flight and airspeed), call the step function, and implement han-
dlers that log property violations or execute corrective actions (i.e.,handlerpropAvoidStall).
Users are responsible for compiling and linking theCopilot code together with their appli-
cation (step 7).

We used the running requirement in this report to monitor a ight in the simulator
X-Plane. We wrote an X-Plane plugin to show the state of the C monitor and some additional
information on the screen (Fig. 5.1). To test the code, we brought an aircraft to a stall by
increasing the angle of attack, which also lowered the airspeed (Fig. 5.2). After 10 seconds
below the speci ed threshold, the monitor became active, remaining on after executing a
stall recovery (Fig. 5.3).

	Introduction
	Step-by-step Framework Workflow
	FRET Steps
	Ogma Steps
	Copilot Steps
	Preliminary Results
	Conclusion
	FSM Specification
	FSM Manager Specification
	FSM Sensor pecification
	Regulators Specification

